วันอาทิตย์ที่ 10 กุมภาพันธ์ พ.ศ. 2556

ประวัติการค้นพบอิเล็กทรอนิกส์

ประวัติการค้นพบอิเล็กทรอนิกส์ยุคที่ 1 (ค.ศ. 1940 - 1953)ใช้หลอดสูญญากาศเป็นอุปกรณ์สำคัญ สื่อที่ใช้บันทึกข้อมูลสำรองคือ บัตรเจาะรู ได้แก่ เครื่อง Mark I ENIAC UNIVAC เป็นต้น เครื่องมือเหล่านี้ประสิทธิภาพใกล้เคียงกับเครื่องคิดเลขในยุคปัจจุบัน แต่ขนาดใหญ่เท่าบ้าน



หลอดสุญญากาศ



ENIAC


ยุคที่ 2 (ค.ศ. 1953 - 1963)ใช้ทรานซิสเตอร์แทนหลอดสูญญากาศ ประสิทธิภาพสูงขึ้นราคาถูกลงจึงสามารถกระจายตัวสู่ผู้คนทั่วโลกได้ง่ายขึ้น อย่างเช่นในรูปแบบ โทรทัศน์ วิทยุ


ทรานซิสเตอร์





วิทยุทรานซิสเตอร์

ยุคที่ 3 (ค.ศ. 1963 – 1972)ใช้แผงวงจรรวม (Integrated Circuits หรือ IC) ซึ่งสามารถทำงานเทียบเท่ากับทรานซิสเตอร์หลายร้อยตัวรวมกัน ทำให้คอมพิวเตอร์มีขนาดเล็กลงกว่าเดิม ใช้พลังงานน้อยลงและมีความร้อนน้อยลง แต่มีความเร็วเพิ่มมากขึ้นและมีราคาถูกลง


IC

ยุคที่ 4 (ค.ศ.1972 – 1984)พัฒนาแผงวงจรรวมมาเป็นแผงวงจรขนาดใหญ่ ทำให้เกิดไมโครโพรเซสเซอร์ หรือชิป (Chip) ตัวแรกของโลก คือ Intel 4004



intel 4004ยุคที่ 5 (ค.ศ.1984 - 1990)มีการพัฒนารูปแบบการโต้ตอบและ แสดงผลทางหน้าจอเพื่อให้ดูง่ายขึ้นมีการพัฒนาเครือข่ายคอมพิวเตอร์ความเร็วสูง


Iphone 4s
ยุคที่ 6 (ค.ศ.1900 - อนาคต)ทำให้คอมพิวเตอร์มีเชาว์ปัญญาคล้ายมนุษย์ สามารถตัดสินใจเลียนแบบการใช้เหตุผลของมนุษย์ เรียกว่า “ปัญญาประดิษฐ์ (Artificial intelligence หรือ AI)”



asimo

ถ้าอยากทราบประวัติคอมพิวเตอร์เพิ่มเติมอย่างละเอียดคลิกที่นี่


ตัวต้านทาน






ตัวต้านทานเป็นอุปกรณ์อิเล็กทรอนิกส์ชนิดหนึ่งที่มีสมบัติในการ ต้านการไหลของกระแสไฟฟ้า อย่างเช่นถ้าตัวต้านทานมีค่ามากกระแสก็จะน้อย ถ้าตัวต้านทานมีค่าน้อยกระแสก็จะมาก ตัวอย่างการใช้งานในชีวิตประจำวันคือพัดลมของเรา


เมื่อเรากดเบอร์ 1 คือการปรับให้ความต้านทานมากขึ้นทำให้กระแสไฟพัดลมหมุนช้า ตรงข้ามกับ
ถ้าเราปรับไปที่เบอร์ 3 คือการปรับให้ความต้านทานน้อยลงทำให้กระแสไฟมากขึ้น พัดลมหมุนเร็ว เย็นสบาย




โดยทั่วไปแบ่งตัวต้านทานเป็น 3 ประเภท ได้แก่







1) ตัวต้านทานคงที่ ( Fixed Value Resistor ) เป็นตัวต้านทานที่มีค่าความต้านทานของการไหลของกระแสไฟฟ้าคงที่ มีสัญลักษณ์ที่ใช้ในวงจร ดังนี้

ซึ่งสามารถอ่านค่าความต้านทาน ได้จากแถบสีที่คาดอยู่บนตัวความต้านทาน มีหน่วยเป็นโอห์ม ( Ω )
แถบสีที่อยู่บนตัวต้านทานโดยส่วนมากจะมี 4 แถบ และมีแถบสีที่ชิดกันอยู่ 3 สี อีกสีหนึ่งจะอยู่ห่างออกไปที่ปลายข้างหนึ่ง การอ่านค่าจะเริ่มจากแถบสีที่อยู่ชิดกันก่อนโดยแถบที่อยู่ด้านนอกสุดให้เป็นแถบสีที่ 1 และสีถัดไปเป็นสีที่ 2, 3 และ 4 ตามลำดับ สีแต่ละสีจะมีรหัสประจำแต่ละสี
2) ตัวต้านทานที่เปลี่ยนค่าได้ ( Variable Value Resistor ) เป็นตัวต้านทานที่เมื่อหมุนแกนของตัวต้านทาน แล้วค่าความต้านทานจะเปลี่ยนแปลงไป นิยมใช้ในการควบคุมค่าความต่างศักย์ไฟฟ้า ( Voltage )ในวงจรอิเล็กทรอนิกส์ เช่น การเพิ่ม – ลดเสียงในวิทย์หรือโทรทัศน์ เป็นต้น สัญลักษณ์ที่ใช้ในวงจร ดังนี้




3) ตัวต้านทานไวแสง หรือ แอลดีอาร์ ( LDR ) ย่อมาจาก Light Dependent Resistor เป็นตัวต้านทานปรับค่าได้ โดยค่าความต้านทานขึ้นอยู่กับปริมาณแสงที่ตกกระทบ ถ้าแสงที่ตกกระทบมีปริมาณมาก LDR จะมีค่าความต้านทานต่ำ ซึ่งสัญลักษณ์ที่ใช้ในวงจร คือ




ตารางการ่อ่านค่าความต้านทาน




ตัวเก็บประจุ



ตัวเก็บประจุเป็นอุปกรณ์อิเล็กทรอนิกส์ชนิดหนึ่งที่ทำหน้าที่สะสมประจุไฟฟ้าหรือ
คายประจุไฟฟ้าให้กับวงจรหรืออุปกรณ์อื่นๆ
ตัวเก็บประจุบางชนิดจะมีขั้ว คือขั้วบวก และขั้วลบ ดังนั้นการต่อ
ตัวเก็บประจุในวงจร ต้องต่อให้ถูกขั้ว และต้องทราบค่าของตัวเก็บประจุด้วยว่าเหมาะสม
กับวงจรอิเล็กทรอนิกส์นั้นๆ หรือไม่ ซึ่งค่าความจุของตัวเก็บประจุจะมีหน่วยเป็น
ฟารัด ( Farad ) ใช้ตัวอักษรย่อคือ F แต่ตัวเก็บประจุที่ใช้กันทั่วไปมักมี
หน่วยเป็นไมโครฟารัด ( µ F ) ซึ่ง 1 F มีค่าเท่ากับ 10 6 µ F ตัวเก็บประจุ
มีด้วยกันหลายแบบหลายขนาด แต่ละแบบจะมีความเหมาะสมกับงานที่แตกต่างกัน ตัวเก็บประจุโดยทั่วไปแบ่งเป็น 2 แบบ ได้แก่


1) ตัวเก็บประจุชนิดค่าคงที่ ( Fixed Value Capacitor ) เป็นตัวเก็บประจุที่ได้รับการผลิตให้มีค่าคงที่ ไม่สามารถเปลี่ยนแปลงค่าความจุได้ แต่จะปรับค่าความจุให้เหมาะสมกับวงจรได้โดยนำตัวเก็บประจุหลายๆ ตัวมาต่อกันแบบขนานหรืออนุกรม สัญลักษณ์ของตัวเก็บประจุชนิดค่าคงที่
ในวงจรจะเป็น




2 ) ตัวเก็บประจุเปลี่ยนค่าได้ ( Variable Value Capacitor ) เป็นตัวเก็บประจุที่สามารถปรับค่าความจุได้ โดยทั่วไปมักใช้ในวงจรปรับแต่งสัญญาณ
ทางอิเล็กทรอนิกส์ หรือพบในเครื่องรับวิทยุซึ่งใช้เป็นตัวเลือกหาสถานีวิทยุ ตัวเก็บประจุ
ุชนิดนี้ส่วนมากเป็นตัวเก็บประจุชนิดใช้อากาศเป็นสาร ไดอิเล็กทริกและการปรับค่า
จะทำได้โดยการหมุนแกน ซึ่งมีโลหะหลายๆ แผ่นอยู่บนแกนนนั้น เมื่อหมุนแกน
แผ่นโลหะจะเลื่อนเข้าหากันทำให้ค่าประจุเปลี่ยนแปลง สัญลักษณ์ของตัวเก็บ
ประจุเปลี่ยนค่าได้ในวงจรจะเป็น





ไดโอด



ไดโอดเป็นอุปกรณ์อิเล็กทรอนิกส์ที่ทำจากสารกึ่งตัวนำ ช่วยควบคุมให้กระแสไฟฟ้า
จากภายนอกไหลผ่านได้ทิศทางเดียว และป้องกันกระแสไฟฟ้าไหลย้อนกลับ จากอุปกรณ์
ประเภทขดลวดต่างๆ ไดโอดประกอบด้วยขั้ว 2 ขั้ว คือ แอโนด ( Anode : A )ต้องต่อ
กับถ่านไฟฉายขั้วบวก ( + ) และแคโทด ( Cathode : K ) ต้องต่อกับถ่าน
ไฟฉายขั้วลบ ( - ) การต่อไดโอเข้ากับวงจรต้องต่อให้ถูกขั้ว ถ้าต่อผิดขั้วไดโอดจะ
ไม่ยอมให้กระแสไฟฟ้าไหลผ่าน ทำให้เครื่องใช้ไฟฟ้าทำงานในวงจรไม่ได้ซึ่งสัญลักษณ์
ของไดโอดในวงจรไฟฟ้า เป็น



ไดโอดบางชนิดเมื่อมีกระแสไฟฟ้าไหลผ่านจะให้แสงสว่างออกมา เราเรียกว่า
ไดโอดเปล่งแสง หรือ แอลอีดี ( LED) ซึ่งย่อมาจาก Light Emitting Diodeและมีสัญลักษณ์ในวงจรเป็น




หลอด LED ประดับสวยงาม

จากภาพจะเห็นว่า LED มีขายื่นออกมาสองขา ขาที่สั้นกว่าคือ ขั้วแคโทด (ขั้วลบ) และขาที่ยาวกว่าคือ ขั้วแอโนด (ขั้วบวก) ไดโอดเปล่งแสงนี้มีลักษณะคล้ายๆหลอด
ไฟเล็กๆ กินไฟน้อย และนิยมนำมาใช้งานอย่างกว้างขวาง เช่น ไฟกะพริบตามเสียงเพลง ไฟหน้าปัดรถยนต์ ไฟเตือนในเครื่องใช้ไฟฟ้าต่างๆ ไฟที่ใช้ในการแสดงตัวเลขของ
เครื่องคิดเลข เป็นต้น






ทรานซิสเตอร์




ทรานซิสเตอร์เป็นอุปกรณ์อิเล็กทรอนิกส์ที่ทำจากสารกึ่งตัวนำ ทรานซิสเตอร์แต่ละชนิด
จะมี 3 ขา ได้แก่
ขาเบส ( Base : B )
ขาอิมิตเตอร์ ( Emitter : E )
ขาคอลเล็กเตอร์ ( Collector : C )


หากแบ่งประเภทของทรานซิสเตอร์ตามโครงสร้างของสารที่นำมาใช้จะแบ่งได้ 2 แบบ คือ

1) ทรานซิสเตอร์ชนิด พีเอ็นพี ( PNP ) เป็นทรานซิสเตอร์ที่จ่ายไฟเข้าที่ขาเบสให้มีความต่างศักย์ต่ำกว่าขาอิมิตเตอร์

2) ทรานซิสเตอร์ชนิด เอ็นพีเอ็น ( NPN ) เป็นทรานซิสเตอร์ที่จ่ายไฟเข้าที่ขาเบสให้มีความต่างศักย์สูงกว่าขาอิมิตเตอร์




ทรานซิสเตอร์เป็นอุปกรณ์ซึ่งถูกควบคุมด้วยกระแสไฟฟ้าที่ผ่านขา B หรือเรียกว่า กระแสเบส นั่นคือ เมื่อกระแสเบสเปลี่ยนแปลงเพียงเล็กน้อยก็จะทำให้กระแสไฟฟ้าในขา E (กระแสอิมิตเตอร์) และกระแสไฟฟ้าในขา C (กระแสคอลเล็กเตอร์) เปลี่ยนแลงไปด้วย ซึ่งทำให้ทรานซิสเตอร์ทำหน้าที่เป็นสวิตช์ปิดหรือเปิดวงจร โดยถ้าไม่มีกระแสไฟฟ้าผ่านขา B ก็จะทำให้ไม่มีกระแสไฟฟ้าผ่านขา E และ C ด้วย ซึ่งเปรียบเสมือนปิดไฟ (วงจรเปิด) แต่ถ้าให้กระแสไฟฟ้าเพียงเล็กน้อยผ่านขา B จะสามารถควบคุมกระแสไฟฟ้าที่มากกว่าให้ผ่านทรานซิสเตอร์แล้วผ่านไปยังขา E และผ่านไปยังอุปกรณ์อื่นที่ต่อจากขา C




การต่อวงจรอิเล็กทรอนิก

การนำอุปกรณ์อิเล็กทรอนิกส์มาต่อในวงจรร่วมกันเพื่อใช้งาน
ต้องศึกษาว่าอุปกรณ์อิเล็กทรอนิกส์แต่ละชิ้นนั้นใช้การต่อแบบใดในวงจร
และทำให้เกิดผลอย่างไรต่อวงจรนั้น เพื่อให้ตรงกับวัตถุประสงค์ของการใช้งาน และไม่ให้อุปกรณ์อิเล็กทรอนิกส์เกิดการชำรุดเสียหาย





การต่อตัวต้านทาน


การต่อตัวต้านทานต่อแบบวงจรขนาน



การต่อตัวต้านทานเข้าไปในวงจรไฟฟ้าจะทำให้มีปริมาณกระแสไฟฟ้าที่ไหลผ่าน
ในวงจรลดลง โดยสังเกตได้จากความสว่างของหลอดไฟ และจำนวนช่องที่เข็มเบนไปของ
แอมมิเตอร์ที่ลดน้อยลงซึ่งการต่อตัวต้านทานเข้าไปในวงจรนั้นไม่ต้องคำนึงถึงขั้วหรือปลาย
ขาของตัวต้านทาน ดังนั้นเมื่อต่อวงจรโดยสลับปลายขาของตัวต้านทาน หลอดไฟจึง
สว่างได้เหมือนเดิมและนับจำนวนช่องที่เข็มเบนไปได้เท่าเดิม



การต่อตัวเก็บประจุ

การต่อตัวเก็บประจุนั้น จะมีแถบสีขาว เขียนสัญลักษณ์เป็น
เครื่องหมาย (-)เครื่องหมายลบ บอกให้ทราบว่า ขาของตัวเก็บประจุ
ที่อยู่ข้างเดียวกันกับแถบสีขาวนั้นเป็นขั่วลบ การต่อนั้นต่อได้ทั้งแบบ
อนุกรม และแบบขนาน


การต่อตัวเก็บประจุแบบอนุกรม







การต่อตัวเก็บประจุแบบขนาน




การประจุไฟให้กับตัวเก็บประจุสามารถทำได้โดยการต่อตัวเก็บประจุตัวเก็บประจุเข้ากับวงจรไฟฟ้าอย่างง่าย โดยแบตเตอรี่จะจ่ายไฟให้แก่ตัวเก็บประจุ


ดังนั้นเข็มแอมมิเตอร์จึงเบนไปจากเดิมในระยะแรกและเบนกลับมาชี้

ที่ศูนย์ในเวลาต่อมาเมื่อการประจุสิ้นสุด และจะมีประจุไฟฟ้าเก็บไว้ใน


การคายประจุ


ถอดถ่านไฟฉายออก แล้วนำตัวเก็บประจุมาต่อแบบอนุกรม
เพื่อทำการคายประจุที่อยู่ภายใน ตัวเก็บประจุ




ดังนั้นเมื่อนำตัวเก็บประจุที่ประจุไฟแล้วมาต่อเข้ากับวงจร จึงพบว่าเข็มของแอมมิเตอร์สามารถเบนไปได้ แสดงว่ามีกระแสไฟฟ้าไหลในวงจร แต่เมื่อทิ้งไว้สักครู่หนึ่ง ประจุไฟฟ้าที่เก็บไว้ในตัวเก็บประจุจะค่อยๆ สูญเสียไป ดังนั้นการต่อตัวต้านทานเข้าไปในวงจรไฟฟ้าซึ่งต่อกับตัวเก็บประจุไฟแล้ว จึงเป็นการช่วยให้ตัวเก็บประจุสูญเสียประจุไฟฟ้าได้ช้าลง


การต่อไดโอดเปล่งแสง (LED)



หลอดไฟชิด LED นั้นจะมี 2 ขา ขาหนึ่งสั้น และอีกขาหนึ่งยาว ขาที่ยาวนั้นคือขั่ว บวก (+)
การต่อไดโอดเปร่งแสงหรือLEDนั้น ต้องต่อให้ถูกขั่วมิฉะนั้นไดโอดจะไม่เปร่งแสง


วงจรอิเล็กทรอนิก
ความรู้เรื่องอุปกรณ์อิเล็กทรอนิกส์เบื้องต้น และการต่อวงจรอิเล็กทรอนิกส์
ที่นีกเรียนเคยได้ศึกษามาแล้วนั้น สามารถนำมาต่อวงจรเป็นเครื่องใช้
อย่างง่ายๆได้ เช่น ออดไฟฟ้า ไฟกะพิบ เป็นต้น ซึ่งสามารถนำไป
ใช้ประโยชน์ได้มากมาย
วงจรออดไฟฟ้า





อุปกรณ์ตัวต้านทาน
R1 = 330K
R2 = 100R

ตัวเก็บประจุ
C1 = 10nF-63V
C2 = 100uF-25V

ทรานซิสเตอร์
Q1 = BC547
Q2 = BC327

อื่นๆ
B1 = ถ่าน AA
SW1 = สวิตSPKR = ลำโพง


วงจรไฟกระพริบ

อุปกรณ์
ถ่านไฟฉายAA 4 ก้อน
สายไฟ 1 ชุด
ตัวเก็บประจุ 470 µ F 2 ตัว
ทรานซิสเตอร์ C 458 2 ตัว
ไดโอดเปร่งแสงLED 2 ตัว
ตัวต้านทานปรับค่าได้ 24 kΩ 2 ตัว
สวิตช์ 1 ตัว

ไม่มีความคิดเห็น:

แสดงความคิดเห็น